Welcome to the Oxford University Physics Society!

Hello and welcome to the Oxford University Physics Society (or PhysSoc for short)! This year, we have plenty of events on, including talks, socials, extracurricular classes and much more. This isn’t a society just for physicists; this is a society for anyone who is interested in physics, its applications, and physics-related topics. To find out more, have a look at our Youtube channel, our Facebook page or subscribe to our mailing list.

How do I get involved? Simple. Head over to the How to Join page and follow the instructions there.

Keep it |ψ|!

Trinity term 2019 TPP physics pub quiz

New PhysSoc merch!

We’re now opening orders for our new T-shirts and original hoodies! Get our classic design in blue, burgundy, green, grey or black.

Hoodies: £20, https://forms.gle/QDmzwquJquzPDNXe8
T-shirts: £15, https://forms.gle/uPPwCzAxsxTttRQw5

Michaelmas 2019 Termcard

Here’s a list of events we have prepared for Michaelmas 2019!

Freshers Social
Julien Devriendt: “From Supernovae to Supermassive Black Holes”
Week2WednesdayMax Abitbol: “Cosmic Microwave Background”
Paul Fendley: “Lattice, Symmetry and Topological Computations”
Halloween Pub Social
Andrew Boothroyd: “Topology: a New Twist to Electrons in Quantum Materials”
Crewdate with PhilSoc
David Marshall: “Physical Oceanography part 1”
Bob Coecke: “Quantum Linguistics”
Simon Clark event
Week6ThursdayHans Kraus: “Dark Matter Direct Detection Experiments”
Pub crawl with Invariants
David Marshall: “Physical Oceanography part 2”
Tony Bell: “Astrophysics at the Highest Energies”
Christmas Social
Baron Ho: “Magnetic and Condenser Physics”
Todd Huffman: “The Higgs Mechanism Explained”

The following events are presented from newest to oldest. Upcoming events will be posted here and on our Facebook page on a weekly basis.

Week 5, Thursday: Simon Clark: “Why You Should Care About The Stratosphere”


The stratosphere is a fascinating place; a lid on the turbulent lower atmosphere, a realm of alien dynamics that defy our everyday experiences, and home to the most violent events in the entire atmosphere. Every now and again the stratosphere reaches down and completely changes the weather we experience on the surface. It may well play a key role in the single most dangerous experiment humanity ever attempts. So, in short, you really should understand a bit more about what’s going on up there.

In this talk I will give an introduction to the key features, dynamics, and impacts of the stratosphere. In particular I’ll be discussing sudden stratospheric warmings and their impacts on surface weather, the subject of my PhD, and also the potential use of the stratosphere in geoengineering.

More info on the Facebook event page: https://www.facebook.com/events/545243432960578/

Week 5, Wednesday: Professor Bob Coecke’s class: “Quantum compilation and natural language processing in one picture”


For well over a decade, we developed an entirely pictorial (and of course, formally rigorous) presentation of quantum theory [1], and it was recently shown that graphical reasoning by means of ZX-calculus can reproduce all equational reasoning in Hilbert space [2a, 2b]. In practical terms, it is currently for example being used as the core of quantum compilation [3], as it allows for easy translation between different computational models, allows for automation, and has outperformed any other method for circuit reduction. At the present, experiments are also being setup aimed at establishing the age at which children could effectively learn quantum theory in this manner. Meanwhile, the pictorial language has also been successful in the study of natural language [4] which induces new quantum algorithms [5], and we have started to apply it to model cognition, where we employ GPT-alike models [6]. In a recent development we are able to assign meaning to entire texts, which then looks like a quantum circuit, that reduces to a ZX-like diagram.

More info on the Facebook event page: https://www.facebook.com/events/439075810139369/

Week 4, Wednesday: Professor David Marshall’s class: “Physical Oceanography”


I stumbled into physical oceanography by chance, having been set on becoming a theoretical particle physicist. This serendipitous decision is one of the best I ever made! In these two lectures, I’ll explain how I stumbled into oceanography, why there is so much work for a physicist in the Earth sciences (and no doubt many other interesting areas of science), and how many of my apprehensions about moving away from “mainstream physics” proved completely unfounded. I will attempt to illustrate some of ways in which a physicist can contribute to understanding the circulation of the oceans through a few of the problems I’ve worked on: exploiting simple theoretical models, numerical models and observations, but always with the mindset of a physicist. The first lecture will focus on the Atlantic overturning circulation (or, as the media likes to portray it, “Will the Gulf Stream shut down?) The second lecture will focus on a curious tale of turbulent ocean eddies and their counterintuitive impact on the Antarctic Circumpolar Current. While my lectures will contain mathematics, you should not need any background knowledge beyond that of a starting first year physicist.

More info on the Facebook event page: https://www.facebook.com/events/723803104791019/

– Week 4, Tuesday: PhysSoc x PhilSoc Crewdate

If you drink a bottle of wine but nobody is there to see it, are you still drunk?

That’s a really lame philosophical question, and also one you don’t need to find out the answer to – bring your wine (and sconces, and shoes) to Jamal’s and drink with lots of other physicists and philosophers instead! £12 PhysSoc member entry

Link for PhysSoc tickets: https://fixr.co/event/740190293

More info on the Facebook event page: https://www.facebook.com/events/671768969980258/

– Week 3, Thursday: Professor Andrew Boothroyd: “Topology: a new twist to electrons in quantum materials”


Topology is a branch of mathematics which deals with whether shapes can or cannot be smoothly deformed into one another. In the last decade, solids called topological quantum materials have become a hot topic in physics following the discovery of electronic states which are topologically distinct from those of electrons in free space. In this lecture, I will explain how topology is changing the way physicists think about electrons in solids, and describe how notions of topology can help us understand the existence and behaviour of exotic electronic states such as skyrmions, topological insulators, and Weyl fermions.

More info on the Facebook event page: https://www.facebook.com/events/2186642148295044/

– Week 3, Wednesday: Halloween Pub Night

Since we’ll all be spending October 31st at this week’s Physics Society talk, celebrate Halloween with us at the Chequers pub a day early!

Have any good physics-related Halloween costume ideas? The first 40 PhysSoc members in costume at the pub (who bring or buy a PhysSoc membership) will have their first drink paid for by the society.

(In addition to buying membership, bring money if you want to buy stash!)

More info on the Facebook event page: https://www.facebook.com/events/698180477369190/

– Week 3, Wednesday: Professor Paul Fendley’s class: “Splitting an electron (effectively)”


A fundamentally weird characteristic of quantum mechanics is that it makes sense to add different states together. As a consequence, striking and counterintuitive phenomena can occur in quantum many-body systems. For example, certain systems comprised entirely of electrons have an emergent degree of freedom whose charge is a fraction of the electron’s. I’ll explain how such behaviour happens in systems with topological order, and how this feature might lead to a form of quantum computation resistant to errors.

You won’t need to know quantum mechanics beyond that the spin of an electron forms a two-state system — I’ll explain the rest.

More info on the Facebook event page: https://www.facebook.com/events/2429807657103117/

– Week 2, Wednesday: Professor Max Abitol’s class: “The First Second: how observations of the cosmic microwave background reveal physics of the early Universe”


The cosmic microwave background (CMB) is radiation remnant from the Big Bang. Observations of the CMB result in a picture of the Universe from nearly 14 billion years ago when it was only 380,000 years old. Combined with our understanding of General Relativity, these observations allow us to infer large scale properties of the Universe, such as the total amount of energy in baryonic matter, dark matter and dark energy, with percent level precision. The next decade of CMB observations will push our understanding of cosmology even further, to the first fraction of a second. Inflation is a process thought to have created the initial conditions of the Universe through an exponential expansion of space at the beginning of time. Gravitational waves generated by inflation leave an observable imprint in the CMB, called B-modes. A detection of primordial B-modes would provide strong evidence for inflation and mark a breakthrough in modern cosmology.

In this lecture, I will introduce the theoretical background and observational history of the CMB that have been fundamental in developing the standard cosmological model. I will then discuss current experimental and data analysis methods, with a focus on B-mode measurements. To conclude, I will talk about remaining tensions, questions and future prospects in CMB cosmology.

More info on the Facebook event page: https://www.facebook.com/events/423137384887064/

– Week 1, Thursday: Professor Julien Devriendt: “From supernovae to supermassive black holes: how to reconcile the standard Big Bang model with observed galaxy properties”


The standard Big Bang model has proven incredibly successful in describing our Universe on super galactic scales with just a handful of numbers. However, it does require that (fairly) cold dark matter, as opposed to the normal matter of which we are made of, be the dominant form of matter in the Universe. This simple albeit quite extraordinary requirement has dramatic consequences for the formation and evolution of galaxies such as our own Milky Way, as it makes very robust predictions regarding the abundance and structure of the dark matter halos which host these galaxies. In particular, it forecasts the existence of many more dwarf dark matter halos than observed dwarf galaxies, and at the other end of the mass spectrum, stipulates that extremely massive galaxies should be populating the most massive dark matter halos. In this talk, I will describe current efforts to reconcile these discrepancies by modelling the most energetic events in the Universe, namely supermassive black hole jets and supernovae explosions, within cosmological hydrodynamics simulations.

More info on the Facebook event page: https://www.facebook.com/events/434099957486159/

– Week 1, Wednesday: Freshers’ Social

Pizza! Drinks! Games!

A chance to buy (and WIN) Oxford University Physics Society stash (more details below)!

Whether you’re a physics student or passionate about physics, come down to the annual freshers’ social! Meet people who share your interests or just show up and have a good time. We have food, drinks, and games for everybody!

More info on the Facebook event page: https://www.facebook.com/events/1412544752234009/